
Collision Avoidance for an Autonomous Surface
Vehicles using Deep Reinforcement Learning
Ivana Collado González

Tecnologico de Monterrey
School of Science and Engineering
Av. Eugenio Garza Sada Sur 2501

Monterrey, Mexico
a00569475@itesm.mx

Intelligent Systems Project I - IMT

Victor Sebastian Martinez Perez
Tecnologico de Monterrey

School of Science and Engineering
Av. Eugenio Garza Sada Sur 2501

Monterrey, Mexico
a01232474@itesm.mx

Intelligent Systems Project I - ISD

Leonardo Garrido
Tecnologico de Monterrey

School of Science and Engineering
Av. Eugenio Garza Sada Sur 2501

Monterrey, Mexico
leonardo.garrido@tec.mx

Professor

Abstract—Fully-autonomous Unmanned Surface Vehicles
(USVs) must be capable of dealing with high levels of uncer-
tainty, while completing complex maritime tasks. In order to
cope with the increasing demand in maneuverable flexibility in
unknown environments, robust collision avoidance methodologies
are required. This project presents a deep reinforcement learning
neural network that acts as a collision avoidance guidance law,
while using a low-lever controller. The low-lever adaptive sliding
mode controller makes this DRL collision avoidance strategy
more robust in comparison to other collision avoidance DRL
strategies.

Index Terms—collision avoidance, USV, velocity obstacle, deep
reinforcement learning, deep deterministic policy gradient

I. INTRODUCTION

More than 75% of incidents in the shipping industry are
caused by human error [2]. Unmanned Surface Vehicles
(USVs) can substitute human operations that are time consum-
ing or dangerous, such as environmental monitoring or mine
searching [3]. Development of reliable collision avoidance is
essential to the creating of fully-autonomous USVs, immune
to human error, reducing human accidents.

Collision avoidance methods can be divided into global,
local and hybrid approaches. Global methods include graph
search methods like A* [12] and Voronoi Graphs, and ran-
domizing methods like rapidly-exploring random trees [5]
and probabilistic road maps [6]. Global methods require a
complete global map of the environment to be processed
in order to find an optimal trajectory to a goal in advance.
Moreover, an optimal trajectory must be recalculated in case
of environment uncertainty and disturbances, making them
computationally expensive and infeasible for real-world ap-
plications with limited processing power [8]. Local methods,
also known as reactive methods, like, artificial potential fields
[14], dynamic window approaches, Velocity Obstacle (VO)
methods [7] and control-based methods, make their imme-
diate guidance decisions only on environmental sensing [8].
Local approaches are therefore computationally less expensive
than global ones, which in turn makes them better suited
for real-time applications and applications where the global
environment is unknown. However, they are susceptible to
local minimum or ”local death ends”. Hybrid approaches, as

the name implies, are combinations between global and local
methods . First a global trajectory is created and then local
approaches are applied in case of environment disturbances.

Reinforcement Learning (RL) has been recently applied
successfully to solve USV control and guidance problems.
A Deep Reinforcement Learning Neural Network (DRL NN)
used in [8] was trained end to end to perform path following
control of an autonomous surface vehicle while performing
collision avoidance. A deep reinforcement learning (DRL)
technique was presented in [9] to act as a path following
guidance law for an autonomous surface vehicle using an
adaptive sliding mode controller.

This project proposes a novel DRL NN to act as a guidance
law for collision avoidance, similar to [8], while using a
low-level adaptive sliding mode controller for path following,
similar to [9]. This work only deals with static, round-shaped
obstacles.

Section II presents a simplified version of the original
Velocity Obstacle method [7] to perform collision avoidance
of static round-shaped obstacles. Section III presents the DRL
problem definition. Section IV then presents the mathematical
model of the USV used in this project. Afterwards, the
Methodology section resents the specific algorithms used for
the DRL environment, followed by the specific implementation
parameters used in the MDP and training of the NN. Finally,
preliminary results of the project are resented in section VII,
followed by conclusions.

II. VELOCITY OBSTACLE

Consider an USV (A) with velocity VA, and a static obstacle
(B), with known position. In order to compute the Velocity
Obstacle (VO), it is necessary to map the Configuration Space
of B (the space of all the possible positions of B) to A by
reducing the latter to a point and by enlarging B by the radius
of A. A Collision Cone (CCA,B) is defined as the set of
relative velocities between A and B that will eventually result
in a collision:

CCA,B = {VA|λA ∩B 6= 0} (1)

where λA is the line of VA.

Fig. 1: VA and the Collision Cone CCA,B

The CCA,B (Fig. 1) is a sector with apex in A and bounded
by two tangent lines λf and λr that go from A to B.

In order to define the points where λf and λr are tangent to
B, a circle C is defined with center in A and with a radius D,
which is the distance from A to the center of B. Considering
NED as the global reference frame, the equations that define
circles C and B are:

rB
2 = (x− a)2 + (y − b)2 (2)

rC
2 = (x− c)2 + (y − d)2 (3)

D =
√

(c− a)2 + (d− b)2, (4)
and rB + rC > D > |rB − rC |

where (2) represents B with origin at (a, b) and (3) is C with
origin at (c, d), as shown in figure 2. The intersection of C
and B is described by the following equations:

x1,2 =
a+ c

2
+

(c− a)(rB
2 − rC2)

2D2
± 2

b− d
D2

∂ (5)

y1,2 =
b+ d

2
+

(d− b)(rB2 − rC2)

2D2
∓ 2

a− c
D2

∂ (6)

∂ =
1

4

√
(D + rB + rC)(D + rB − rC)∗√

(D − rB + rC)(−D + rB + rC) (7)

with points (x1, y1) and (x2, y2), the CCA,B is fully defined.
To avoid multiple obstacles, we consider the union of

multiple Velocity Obstacles:

V O = ∪mi=1V OBi (8)

where m is the number of obstacles. The avoidance velocities,
then, consist of those that lie outside of the multiple VO’s.

When considering the case of many obstacles, it is useful
to prioritize those obstacles that present an imminent collision.
This is done by considering those collisions that occur at

Fig. 2: Intersections of C and B

some time t < Th, where Th is a suitable time horizon
selected based on system dynamics, obstacle trajectories and
computation time.

V Oh = {VA|VA ∈ V O, ||VA|| ≤
dm
Th
} (9)

Considering dm as the shortest relative distance between the
boat and the obstacle, the set V Oh is built. This set represents
the velocities that would result in a collision, occurring beyond
the time horizon. To account for imminent collisions the set
V Oh is subtracted from V O.

A. Avoidance maneuver

Any velocity outside of VO would avoid collisions. How-
ever, the USV presents actuator constraints such as maximum
linear acceleration along and maximum angular acceleration
arot that must be considered. With this information, the
admissible longitudinal and rotational accelerations must be
set and integrated over a certain time step to obtain a set of
Reachable Velocities (RV).

RV = {V ∈ [VA − along ∗∆t, VA + along ∗∆t],
W ∈ [VA − arot ∗∆t, VA + arot ∗∆t]} (10)

By subtracting VO from RV a set of Reachable Avoidance
Velocities (RAV) can be obtained. With this, a maneuver to
avoid B can be performed by selecting any velocity within
RAV.

At most two RAV subsections are created from each VO,
denominated the right subsection Sr and the left subsection
Sl. Figure 3 shows the set of Reachable Avoidance Velocities
and the Velocity Obstacle for a single obstacle.

B. Computing of avoidance trajectories

Two categories for computing trajectories for avoidance of
static and dynamic obstacles are proposed in [7]. A trajectory
consists of a sequence of avoidance maneuvers, selected by
searching over a tree of feasible maneuvers computed at
discrete time intervals. A global search is proposed for off-line
applications, and a heuristic search for on-line applications. In

Fig. 3: RAV, VO and left and right sections

Fig. 4: Vertex closest to goal considering multiple obstacles

this project, a simplified heuristic approach is used to compute
the desired velocity at each time step.

1) Simplified Heuristic: After successfully computing the
RAV subsections, each geometric vertex from the Sl and Sr
is saved and processed. Afterwards, the vertex that has the
minimum euclidean distance to the goal is chosen, as shown
in figure 4.

III. DEEP REINFORCEMENT LEARNING

A. Reinforcement Learning

Reinforcement learning is a branch of ML that focuses on
goal-directed learning from interaction between an agent and
its environment [13]. It uses the formal framework of Markov
Decision Processes (MDP) to define the interaction between
a learning agent and its environment in terms of a state space
S, an action space A, an initial state distribution p(s1), a
transition model p(st+1|st, at), and a reward function r(st, at)
[13]. At each time step t, the agent receives an observation st,
selects an action at based on that and obtains a reward rt+1

a time step later, finding itself in a new state st+1. A policy
π describes the agent’s behavior, by selecting actions based
on previous states. The agent’s objective is to maximize the
amount of reward it receives over time by finding an optimal
policy π∗.

Fig. 5: DDPG architecture

In a MDP, the probabilities given by p completely character-
ize the environment’s dynamics [13]. That is, the probability
of each possible value for st and rt depends only on the
immediately preceding state and action, St−1 and At−1, and,
given them, not at all on earlier states and actions. This is best
viewed a restriction not on the decision process, but on the
state. The state must include information about all aspects of
the past agent–environment interaction that make a difference
for the future.

Action-value functions are widely used in reinforcement
learning algorithms [10]. These functions express the expected
discounted reward after taking an action at in state st, and
follows the policy π, as:

qπ(st, at) = Eπ

[∞∑
k=0

γkRt+k+1

∣∣∣∣∣St = s,At = a

]
(11)

The combination of RL with DL establishes the field of
DRL [4]. One class of DRL algorithm is the actor-critic
algorithm, which approximates both the policy and action-
value functions with a function approximator such as a deep
neural network (DNN).

B. Deep Deterministic Policy Gradient

The DDPG algorithm is an actor-critic DRL method de-
veloped by [10], and its capability of “robustly solving chal-
lenging problems across a variety of domains with continuous
action space” [10] makes it suitable for the guidance problem.
The policy function π(s|θa) and the action-value function
Q(s, a|θc) are DNNs, where θa and θc are the DNN param-
eters. To update both functions, stochastic gradient descent is
executed on batches B of transitions (si, ai, ri, si+1) following
the rules proposed in [9]:

θc ← θc − αc
1

N

∑
i∈B
∇θc(yi −Q(si, ai|θc))2 (12)

θa ← θa − αa
1

N

∑
i∈B
∇aiQ(si, ai|θc)∇θaπ(si|θa) (13)

where αc′ and αa′ are learning rates, and yi is the action-
value estimate, or Temporal Difference (TD) target, obtained
from:

yi = ri + γQ′(si+1, π(si+1|θa)|θc′) (14)

Here, θc and θa are parameters from two target networks.
The target networks are introduced in DDPG to stabilize
training [10], by slowly learning the parameters using the
following equations:

θc′ = (1− τ)θc′ + τθc (15)

θa′ = (1− τ)θa′ + τθa (16)

where τ is the target network update rate. Fig. 5 depicts an
overview of the DDPG architecture and the MDP as proposed
in [9], whereas Algorithm 1 describes the DDPG algorithm
[10].

Algorithm 1 DDPG algorithm

Randomly initialize critic network Q(s, a|θc) and actor
network π(s|θa) with weights θc and θa
Initialize target networks Q

′
and π with weights θc′ ←θc

and θa′ ←θa
Initialize replay buffer R
for episode = 1,M do

Initialize a random process N for action exploration
Receive initial observation state s1

for t = 1, T do
Select action at = π(st|θa) + Nt according to the
current policy and exploration noise
Take action at, observe reward rt and observe new
state st+1

Save transition (st, at, rt, st+1) in R
Sample a random minibatch of N transitions from R
Set yi with Equation (14)
Update the critic by minimizing the loss using Equation
(12)
Update the actor policy using Equation (13)
Update the target networks using Equations (15) and
(16)

end for
end for

IV. MATHEMATICAL MODEL

The mathematical model of the USV platform used in this
work was developed following the methodology proposed by
Fossen [16]. The USV is an underactuated vehicle with a
differential thruster configuration. Fig. 6 depicts the north-
east-down (NED) and body-fixed reference frames, as well
as the forces created by the port and starboard thrusters of
the boat. The overall equation of motion is equation (17), and
equation (18) expresses the kinematics of the USV model.
ηηη = [x, y, ψ]T denotes the xy coordinates and angle about
z, and υυυ = [u, v, r]T corresponds to the surge and sway
velocities, and the yaw rate.

Fig. 6: NED and body-fixed reference frames.

τττ = Mυ̇Mυ̇Mυ̇ + CCC(υυυ)υυυ + DDD(υυυ)υυυ (17)
η̇ηη = JJJ(ηηη)υυυ (18)

Equation (19) is a rotation matrix of velocity vectors in
body-fixed and NED reference frames.

JJJ(ηηη) =

cosψ − sinψ 0
sinψ cosψ 0

0 0 1

 (19)

MMM is a matrix sum of a rigid body mass matrix and an
added mass matrix defined by:

MMM =

m−Xu̇ 0 −myG
0 m− Yυ̇ mxG − Yṙ

−myG mxG −Nυ̇ Iz −Nṙ,

 (20)

CCC(υυυ) is a Coriolis matrix which includes the sum of a rigid
body matrix and an added mass matrix as the MMM matrix. It is
represented by:

CCC(υυυ) =

 0 0 −m(xGr + υ)
0 0 −m(yGr − u)

m(xGr + υ) m(yGr − u) 0



+


0 0 2(Yυ̇υ + (

Yṙ +Nυ̇
2

)r)

0 0 −Xu̇u

2(−Yυ̇υ − (
Yṙ +Nυ̇

2
)r) Xu̇u 0


(21)

In Equation (21), a factor of 2 was implemented to fit the
twin-hull configuration of the USV [15]. Moreover, Equation
(22) is the addition of linear and nonlinear drag matrices:

TABLE I: VTec S-III Physical Parameters

Parameter Value
Length overall 1.01 [m]

Draft 0.09 [m]
Beam overall 0.75 [m]

Centerline-to-centerline side hull separation 0.41 [m]
Individual hull beam 0.27 [m]

Mass 30 [kg]
Longitudinal center of gravity 0.45 [m]

Moment of inertia 4.1 [kgm2]

TABLE II: Hydrodynamic Coefficients

Coefficient Non-dimensional Dimensional
Factor Term

Xu 25, (u > 1.2) 64.55
Yυ 0.5 f(Y, υ)

Yr 3 −πρ
√

(u2 + v2)T 2L

Nυ 0.06 −πρ
√

(u2 + v2)T 2L

Nr 0.02 −πρ
√

(u2 + v2)T 2L2

Xu̇ −2.25
Yυ̇ -23.13
Yṙ -1.31
Nυ̇ -16.41
Nṙ -2.79
Xu|u| 0, (u > 1.2) -70.92
Yυ|υ| -99.99
Yυ|r| -5.49
Yr|υ| -5.49
Yr|r| -8.8
Nυ|υ| -5.49
Nυ|r| -8.8
Nr|υ| -8.8
Nr|r| -3.49

f(Y,υ)=−40ρ|v|

[
1.1+0.0045

L

T
−0.1

Bhull

T
+0.016

(
Bhull

T

)2](πTL
2

)

DDD(υυυ) = −

Xu 0 0
0 Yυ Yr
0 Nυ Nr


−

Xu|u||u| 0 0
0 Yυ|υ||υ|+ Yυ|r||r| Yr|υ||υ|+ Yr|r||r|
0 Nυ|υ||υ|+Nυ|r||r| Nr|υ||υ|+Nr|r||r|


(22)

Equation (23) is a vector of forces and moments created by
the thrusters:

τττ =

τxτy
τψ

 =

 Tport + 0.78Tstbd

0
(Tport − 0.78Tstbd)B/2

 (23)

Finally, Table I [15] contains the physical parameters of
the USV, and Table II contains the constant and variable
hydrodynamic coefficients and equations, as shown in [15].
Further explanation of the model parameters can be found in
[17].

TABLE III: Sensor configuration

Parameter Description Value
N Number of sensor readings 225
d Number of sectors 25
n Number sensor readings per sector N/d
Ss Total visual sensor span 4

3
π [rad]

Sr Maximum rangefinder distance 100 [m]
Lr LiDAR resolution 1.066◦

Wb Boat radius 0.5 [m]
Ws Safety radius 0.3 [m]
Sd Safety distance 0.1 [m]

V. METHODOLOGY

In this section the DRL environment setup and MDP
definition is specified in accordance to the problem at hand.
The simulated sensor for obstacle detection and the RL NN
training process are also explained.

A. Environment

The environment the agent interacts with in this project is a
rectangular area 20 x 40 m2 filled with round static obstacles.
The number of obstacles s was randomly set to be between 0
and 20. The position of the obstacles was randomly calculated
in y and normally distributed in x within the NED reference
frame. The sizes of the obstacles was also randomly set with
radius ranging from 0.1 meters to 1.5 meters. The boat is
set to start with a random position and orientation inside a
rectangular surface of 10 x 5 m2 in the lower region of the
environment surface.

The path is defined by two points. The initial point (x0, y0),
is set in the same region the boat starts in, and a final point
(xd, yd) in the superior region of the environment surface. The
path is defined to be completely vertical, so yd = y0. Then, the
angle ak = atan2(yd − y0, xd − x0) of the path with respect
to NED is calculated.

The desired velocity is a random number between 0.3
and 1.4 m/s2, just above and below of the minimum and
maximum velocity the boat can achieve, this is done so the
boat can move and the actuators are not extensively stressed.

B. Simulating a 2D LiDAR sensor

For this project, a simulation of a 2D LiDAR sensor was
created. Table III contains the sensor configuration used for
the simulation. From it, the sensor span Ss, was chosen to
be similar to the one proposed in [8]. Sr was established to
correspond to the max range of the VLP-16 Velodyne LiDAR.
Also, the LiDAR resolution Lr was set to 1.066 degrees,
though its real resolution is 0.3 degrees, it was changed to
reduce computation costs.

Algorithm 2 demonstrates how the distance values for each
laser was obtained. This algorithm calculates the intersection
of the laser line of sight with the closest obstacle.

C. Obstacle detection

Obstacle avoidance methods require the use of a sensor suite
to identify possible obstacles in the environment. Including

Algorithm 2 Laser scan simulation

o number of obstacles
Oo obstacle array ordered from closest to farthest from the
boat
N number sensor readings
Ss sensor span
Sd sensor measured distance
sα sensor angle
Lr LiDAR resolution
x={x1, ..., xN} Sensor rangefinder measurements
for i in N do
Sd = Sr
sα = −Ss/2 + Lr · i
sα = sα with respect to NED ∈ [−π, π]
for j in o do

Calculate coordinates (obsx, obsy) of Ooi with respect
to the sensor reference frame obsr = Ooi radius
if obsx >= 0 then
g = obs2

r − osb2y
if g >= 0 then

Obtain intersections:
x1 = obsx +

√
g

x2 = obsx −
√
g

y1 = y2 = 0
Obtain distances d1 and d2 to the intersections
if d1 > d2 then
xi = d2

else
xi = d1

end for
end if

end if
else
xi = Sr

end if
end for

all the sensor readings in the training of a neural network
is not a viable approach, given the complexity required for
the satisfactory mapping between the full sensor suite to the
steering signal. To cope with this issue, three approaches for
transforming the sensor readings into a reduced observation
space was proposed [8]. This involves partitioning the sensor
suite into d disjoint sensor sets, hereafter referred to as sectors.

Within each sector, a single scalar that represents the local
sensor readings is meant to be found. Now, instead of having
N sensor measurements, only d features are preserved. Always
returning the minimum sensor reading within the sector is
known as min pooling and returning the maximum reading
max pooling, each of them presenting certain constraints as the
former could overlook feasible passing between obstacles and
the latter ignore small nearby objects [8] as shown in Fig. 7. In
order to cope with this problem, a feasible pooling approach
was developed in [8], in which the maximum feasible travel
distance within a sector is computed. The feasibility pooling

(a) Min pooling (b) Max pooling

(c) Feasible pooling

Fig. 7: Pooling techniques for sensor dimensional reduction

algorithm is explained in detail in Algorithm 3.

D. Collision detection

In order to validate a collision, a series of simple steps can
be followed. First, it is necessary to compute the distance to
each obstacle. Then, subtract from the distance the radius of
the obstacle and the radius of the boat, and an extra ’safety’
radius. Finally, if the resulting distance is less than a user
defined safety distance, a collision occurs.

VI. IMPLEMENTATION

A. Markov Decision Process

The Markov Decision Process for this specific application
is defined by the state 25, action 24 and reward 33.

a = [ud, eψ] (24)

S = {u, v, r, ye, ẏe, χαk, uref , sectors, a[0], a[1]} (25)

The state is conformed by u the surge speed, v the sway
speed, r the yaw rate, ye the cross-track error, ẏe the change
in the cross-track error, χαk the angle between the boat and
the path considering slip, uref the reference surge, sectors
are the normalized sector readings, and the actions ud and
eψ , representing the desired surge and error on the boat angle
respectively.

The reward 33 is a composed equation, as it considers both
path following 31 and obstacle avoidance 32 rewards, given a
certain weight λ. The path following reward 31, includes the
cross track error reward 26, the speed reward 27, the angle
regard 28, and the change in velocity and angle rewards 29
and 30.

Ca0 =
1

(a[0]max−a[0]min
∆t)2

Algorithm 3 Feasibility Pooling algorithm

d number of sectors
Assign Sr to all sectors
n number of lasers in a sector
al arc length
Lr LiDAR resolution
Ow opening width
Of opening found
Wb boat radius
Ws safety radius
for s in d do

x = {x1, ..., xn} Sensor rangefinder measurements for
each individual sector
xo = x sorted in ascending order.
for i ∈ xo do
al = lr ∗ xoi
Ow = al/2
Of = false
for j ∈ xo do

if xj > xoi then
Ow = Ow + al
if Ow > (2 ∗ (Wb +Ws)) then
Of = true
break

end if
else
Ow = Ow + al

2
if Ow > (Wb +Ws) then
Of = true
break

end if
Ow = 0

end if
end for
if Of is false then
sectorsi = xoi

end if
end for

end for
Normalize sector readings

Ca1 =
1

(a[1]max−a[1]min
∆t)2

χαk = −χαk

rye = max

{
e−kye|ye|

e−kye(ye)2
(26)

ru = e−kuu (uref−
√
u2+v2)2 (27)

rχ = cos(χαk) (28)

ra0 = tanh−Ca0 ȧ[0]2 (29)

ra1 = tanh−Ca1 ȧ[1]2 (30)

rpf = wye ·rye +wχ ·rχ+wu ·ru+wa0 ·ra0 +wa1 ·ra1 (31)

TABLE IV: Reward parameters

Parameter Value
wye 0.4
wχ 0.4
wu 0.2
wa0 0.2
wa1 0.2
λ 0.9
γθ 4.0
γχ 1.0
ky 0.5
kuu -15.0

roa = −
∑N
i=1(1 + |γθθi|)−1(γxmax(xi, εx)2)−1∑N

i=1(1 + |γθθi|)−1
(32)

where εx > 0 is a small constant removing the singularity at
xi = 0.

R =

{
−1000 if there is a collision
λ · rpf + (1− λ) · roa otherwise

(33)

B. Neural Network Architecture and Training

The DNN architecture and hyper-parameters were selected
to be similar to those expressed in [9]. The actor network
inputs the state, has two hidden layers of 400 and 300
neurons respectively, and outputs the action. The activation
functions are Rectified Linear Units (ReLU) for the hidden
layers, a Sigmoid activation function for velocity output, and
a hyperbolic tangent activation function for the angle output.
The critic network inputs the state, then has a hidden layer of
400 neurons, next adds a hidden layer of 300 neurons which
also inputs the action taken, then has a third hidden layer,
composed of 300 neurons, and outputs the action-value. All of
the hidden layers have ReLU activation functions, except the
output, which has a Linear activation function for the output.

To train the DNNs, the gradient descent-based Adam opti-
mizer was used to learn the DNN parameters, all the param-
eters of the optimizer where chosen in accordance with [9].
The training data consisted of simulating different straight-
line paths, while starting the USV in random positions and
orientations, and vo= [0,0,0]. Each episode consisted of 600
training steps, with a time step of 0.05 seconds, which simu-
lates 20 seconds running the guidance law at 20 Hz. However,
the ASMC was running in the simulation at a higher frequency
of 100 Hz, which is used in practical implementation. Thus,
for every training step, the ASMC runs 5 times before the
next observation. This decision was made because, in practice,
several guidance systems need to run at lower frequencies,
particularly when perception systems, such as computer vision
with cameras or LiDAR, are involved. Finally, training was
stopped after 1500 episodes.

VII. PRELIMINARY RESULTS

In order to successfully program the VO method, program-
ming 2D Boolean set operation was necessary in order to
obtain the RV and RAV sets. For these special operations,

Fig. 8: Velocity obstacle visualisation in RVIZ.

the C++ the Computational Geometry Algorithms Library
(CGAL) [11] was used. A graphic interface using ROS and
RVIZ was created for easy visualization and program debug-
ging, as seen in Fig. 8.

The code implementation of the DRL presented method
makes use of the RL framework provided by the Python toolkit
OpenAi Gym [1], which was created as a mean to standardize
environment creation, so that research on AI becomes easily
reproducible. Keras is a deep learning API also written in
Python. It was designed to be user friendly, so DL models
can be easily designed and fast to produce, its use is further
simplified using TensoFlow notation. The visualization of the
environment is presented in Fig. 9.

Preliminary results of the DRL NN demonstrates that at
this stage the USV is able to avoid collision 53 out of
100 episodes, which indicates an efficiency of 53%. A few
visualization trials of USV behavior in simulation can be found
by clicking this link. It is evident that the USV avoids obstacles
while following a path (light blue), but still presents unstable
behaviour.

VIII. CONCLUSION

In the first stage of the project, the simplified Velocity
Obstacle [7] method was chosen and implemented in order
to obtain deep understanding of collision avoidance basic
technical aspects. This technique can potentially be used as
a comparison strategy for the final DRL collision avoidance
method.

In this second stage of the project, Reinforcement Learning
was defined, along with DDPG, the DRL method chosen for
this project. USV DRL collision avoidance methods where
researched and compared in order to chose a simple and
effective obstacle input strategy, from which feasibility pooling
was chosen for its effective representation of the environment
and low computation cost.

In the last stage of this project, the strategies for creating
the DRL NN environment and training strategy are presented,
along with state vector and reward function definitions. Simple
preliminary testing of the DRL NN is also be presented,
showing promising but still unreliable behaviour from the

Fig. 9: OpenAI Gym visualization of environment for simula-
tion and training.

USV. Training of the NN was interrupted and renewed a few
times because of updates and improvements necessary to NN
architecture, state and rewards, in order to make the USV
behaviour more efficient. The DRL NN still requires more
training and overall reward tuning.

This project will continue to be improved and modified until
a stable path following and avoidance behaviour is reached. A
potential training strategy being considered to improve current
results is to use transfer learning to first show the NN how
to follow a path and afterward to avoid obstacles. Another
improvement strategy is to remove the velocity control from
the problem formulation, this way the USV can focus on
avoidance and path following, controlling only angle.

ACKNOWLEDGMENT

This work was supported by the student group VantTec, as
well as their sponsors: Hacsys, VectorNav, Google, ifm efector,
Uber ATG, RoboNation, Velodyne Lidar, NVIDIA, Skysset,
Akky, Greenzie, and Tecnologico de Monterrey

REFERENCES

[1] Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman,
J.,Tang, J., Zaremba, W., 2016. Openai gym.arXiv:arXiv:1606.0154

[2] D. Campos, et al. ”An Adaptive Velocity Avoidance Algorithm for
Autonomous Surface Vehicles”, IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS),2019.

[3] J. Woo and N. Kim. ”Collision avoidance for an unmanned surface vehicle
using deep reinforcement learning”, Ocean Engineering, 2020.

[4] K. Arulkumaran et al., “Deep Reinforcement Learning: A Brief Sur-
vey,”IEEE Signal Processing Magazine, 2017.

[5] S. M. Lavalle, ”Rapidly-exploring random trees: A new tool for path
planning,” Tech. Rep., 1998.[19]

[6] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, ”Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE Trans. Robot. Autom., vol. 12, no. 4, pp. 566–580,Sep.
1996.

https://drive.google.com/file/d/1_RCXxTxhQKVDjU54puzh82iHNgUcXcne/view?usp=sharing

[7] P, Fiorini and Z. Shiller, ”Motion Planning in Dynamic Environments Us-
ing Velocity Obstacles”, The International Journal of Robotics Research,
1998.

[8] E. Meyer, H, Robinson, A. Rasheed, and O. San, ¨Taming an Autonomous
Surface Vehicle for Path Following and Collision Avoidance Using Deep
Reinforcement Learning¨, IEEE Access, 2020.

[9] A. Gonzalez,-Garı́a, H. Castañeda, and L. Garrido, ¨USV Path-Following
Control Based On Deep Reinforcement Learning and Adaptive Control¨,
unpublished.

[10] T.P. Lillicrap et al., “Continuous control with deep reinforcement learn-
ing,“ https://arxiv.org/pdf/1509.02971.pdf, 2016.

[11] E. Fogel, et al. ”2D Regularized Boolean Set-Operations. In CGAL User
and Reference Manual”, CGAL Editorial Board, 5.1 edition, 2020.

[12] P. Hart, N. Nilsson and B. Raphael, ”A Formal Basis for the Heuristic
Determination of Minimum CostPaths”,IEEE Transactions on Systems
Science and Cybernetics,4, 100–107, 1968.

[13] R.S. Sutton and A. Barto. ”Reinforcement Learning: An Introduction”,
MIT Press, 2018.

[14] O. Khatib, ”Real-time Obstacle Avoidance for Manipulators and Mobile
Robots”,IEEE International Conference on Robotics and Automation, 2,
500–505, 1985.

[15] A. Gonzalez,-Garı́a, H. Castañeda, and L. Garrido, ¨USV Path-Following
Control Based On Deep Reinforcement Learning and Adaptive Control¨,
unpublished.

[16] Fossen, T.I. 2011. Handbook of Marine Craft Hydrodynamics and
Motion Control. John Wiley & Sons, Ltd.

[17] Gonzalez-Garcia, A. and Castañeda, H. 2019. Modeling, Identification
and Control of an Unmanned Surface Vehicle. In AUVSI XPONENTIAL
2019: All Things Unmanned.

APPENDIX A: GANTT

Figure 10 shows the Gantt chart for the project. The Gantt
diagram can also be found here.

https://docs.google.com/spreadsheets/d/1spZI5W_EQCbob-37aWNH1KFXpxMElWP132ishtwR-ds/edit?usp=sharing

Fig. 10: Gantt for the project

	Introduction
	Velocity Obstacle
	Avoidance maneuver
	Computing of avoidance trajectories
	Simplified Heuristic

	Deep Reinforcement Learning
	Reinforcement Learning
	Deep Deterministic Policy Gradient

	Mathematical Model
	Methodology
	Environment
	Simulating a 2D LiDAR sensor
	Obstacle detection
	Collision detection

	Implementation
	Markov Decision Process
	Neural Network Architecture and Training

	Preliminary Results
	Conclusion
	References

